Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 119(22): e2202521119, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1860509

ABSTRACT

Many airborne pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted indoors via aerosol particles. During exercise, pulmonary ventilation can increase over 10-fold, and therefore, exercisers will exhale a greater volume of aerosol-containing air. However, we currently do not know how exercise affects the concentration of aerosol particles in exhaled air and the overall emission of aerosol particles. Consequently, we developed a method to measure in parallel the concentration of aerosol particles in expired air, pulmonary ventilation, and aerosol particle emission at rest and during a graded exercise test to exhaustion. We used this method to test eight women and eight men in a descriptive study. We found that the aerosol particle concentration in expired air increased significantly from 56 ± 53 particles/liter at rest to 633 ± 422 particles/liter at maximal intensity. Aerosol particle emission per subject increased significantly by a factor of 132 from 580 ± 489 particles/min at rest to a super emission of 76,200 ± 48,000 particles/min during maximal exercise. There were no sex differences in aerosol particle emission, but endurance-training subjects emitted significantly more aerosol particles during maximal exercise than untrained subjects. Overall, aerosol particle emission increased moderately up to an exercise intensity of ∼2 W/kg and exponentially thereafter. Together, these data might partly explain superspreader events especially during high-intensity group exercise indoors and suggest that strong infection prevention measures are needed especially during exercise at an intensity that exceeds ∼2 W/kg. Investigations of influencing factors like airway and whole-body hydration status during exercise on aerosol particle generation are needed.


Subject(s)
Aerosols , COVID-19 , Exercise , SARS-CoV-2 , Air Movements , COVID-19/prevention & control , Humans , Respiration
2.
Environ Sci Pollut Res Int ; 28(29): 39322-39332, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1549509

ABSTRACT

The objective of this study is to understand the effect of indoor air stability on personal exposure to infectious contaminant in the breathing zone. Numerical simulations are carried out in a test chamber with a source of infectious contaminant and a manikin (Manikin A). To give a good visual illustration of the breathing zone, the contaminant source is visualized by the mouth of another manikin. Manikin A is regarded as a vulnerable individual to infectious contaminant. Exposure index and exposure intensity are used as indicators of the exposure level in the breathing zone. The results show that in the stable condition, the infectious contaminant proceeds straightly towards the breathing zone of the vulnerable individual, leading to a relatively high exposure level. In the unstable condition, the indoor air experiences a strong mixing due to the heat exchange between the hot bottom air and the cool top air, so the infectious contaminant disperses effectively from the breathing zone. The unstable air can greatly reduce personal exposure to the infectious contaminant in the breathing zone. This study demonstrates the importance of indoor air stability on personal exposure in the indoor environment and provides a new direction for future study of personal exposure reduction in the indoor environment.


Subject(s)
Air Pollution, Indoor , Ventilation , Air Movements , Air Pollution, Indoor/analysis , Manikins
3.
PLoS Comput Biol ; 17(10): e1009474, 2021 10.
Article in English | MEDLINE | ID: covidwho-1477508

ABSTRACT

The role of heating, ventilation, and air-conditioning (HVAC) systems in the transmission of SARS-CoV-2 is unclear. To address this gap, we simulated the release of SARS-CoV-2 in a multistory office building and three social gathering settings (bar/restaurant, nightclub, wedding venue) using a well-mixed, multi-zone building model similar to those used by Wells, Riley, and others. We varied key factors of HVAC systems, such as the Air Changes Per Hour rate (ACH), Fraction of Outside Air (FOA), and Minimum Efficiency Reporting Values (MERV) to examine their effect on viral transmission, and additionally simulated the protective effects of in-unit ultraviolet light decontamination (UVC) and separate in-room air filtration. In all building types, increasing the ACH reduced simulated infections, and the effects were seen even with low aerosol emission rates. However, the benefits of increasing the fraction of outside air and filter efficiency rating were greatest when the aerosol emission rate was high. UVC filtration improved the performance of typical HVAC systems. In-room filtration in an office setting similarly reduced overall infections but worked better when placed in every room. Overall, we found little evidence that HVAC systems facilitate SARS-CoV-2 transmission; most infections in the simulated office occurred near the emission source, with some infections in individuals temporarily visiting the release zone. HVAC systems only increased infections in one scenario involving a marginal increase in airflow in a poorly ventilated space, which slightly increased the likelihood of transmission outside the release zone. We found that improving air circulation rates, increasing filter MERV rating, increasing the fraction of outside air, and applying UVC radiation and in-room filtration may reduce SARS-CoV-2 transmission indoors. However, these mitigation measures are unlikely to provide a protective benefit unless SARS-CoV-2 aerosol emission rates are high (>1,000 Plaque-forming units (PFU) / min).


Subject(s)
Air Conditioning , COVID-19/transmission , Heating , SARS-CoV-2 , Ventilation , Aerosols , Air Microbiology , Air Movements , COVID-19/prevention & control , COVID-19/virology , Computational Biology , Computer Simulation , Humans , Models, Biological , Pandemics , SARS-CoV-2/radiation effects , Social Interaction , Ultraviolet Rays , Workplace
4.
Indoor Air ; 32(1): e12935, 2022 01.
Article in English | MEDLINE | ID: covidwho-1450555

ABSTRACT

COVID-19 has caused the global pandemic and had a serious impact on people's daily lives. The respiratory droplets produced from coughing and talking of an infected patient were possible transmission routes of coronavirus between people. To avoid the infection, the US Centers for Disease Control and Prevention (CDC) advised to wear face masks while maintaining a social distancing of 2 m. Can the social distancing be reduced if people wear masks? To answer this question, we measured the mass of inhaled droplets by a susceptible manikin wearing a mask with different social distances, which was produced by coughing and talking of an index "patient" (human subject) also wearing a mask. We also used the computational fluid dynamics (CFD) technology with a porous media model and particle dispersion model to simulate the transmission of droplets from the patient to the susceptible person with surgical and N95 masks. We compared the CFD results with the measured velocity in the environmental chamber and found that the social distancing could be reduced to 0.5 m when people wearing face masks. In this case, the mass concentration of inhaled particles was less than two people without wearing masks and with a social distancing of 2 m. Hence, when the social distancing was difficult, wearing masks could protect people. We also found that the leakage between the face mask and the human face played an important role in the exhaled airflow pattern and particle dispersion. The verified numerical model can be used for more scenarios with different indoor environments and HVAC systems. The results of this study would make business profitable with reduced social distancing in transportation, education, and entertainment industries, which was beneficial for the reopening of the economy.


Subject(s)
Air Pollution, Indoor , COVID-19 , Masks , Physical Distancing , Air Microbiology , Air Movements , COVID-19/prevention & control , Humans , Pandemics , SARS-CoV-2
5.
Respiration ; 100(12): 1196-1207, 2021.
Article in English | MEDLINE | ID: covidwho-1426985

ABSTRACT

BACKGROUND: Various forms of noninvasive respiratory support methods are used in the treatment of hypoxemic CO-VID-19 patients, but limited data are available about the corresponding respiratory droplet dispersion. OBJECTIVES: The aim of this study was to estimate the potential spread of infectious diseases for a broad selection of oxygen and respiratory support methods by revealing the therapy-induced aerodynamics and respiratory droplet dispersion. METHODS: The exhaled air-smoke plume from a 3D-printed upper airway geometry was visualized by recording light reflection during simulated spontaneous breathing, standard oxygen mask application, nasal high-flow therapy (NHFT), continuous positive airway pressure (CPAP), and bilevel positive airway pressure (BiPAP). The dispersion of 100 µm particles was estimated from the initial velocity of exhaled air and the theoretical terminal velocity. RESULTS: Estimated droplet dispersion was 16 cm for unassisted breathing, 10 cm for Venturi masks, 13 cm for the nebulizer, and 14 cm for the nonrebreathing mask. Estimated droplet spread increased up to 34 cm in NHFT, 57 cm in BiPAP, and 69 cm in CPAP. A nonsurgical face mask over the NHFT interface reduced estimated droplet dispersion. CONCLUSIONS: During NHFT and CPAP/BiPAP with vented masks, extensive jets with relatively high jet velocities were observed, indicating increased droplet spread and an increased risk of droplet-driven virus transmission. For the Venturi masks, a nonrebreathing mask, and a nebulizer, estimated jet velocities are comparable to unassisted breathing. Aerosols are transported unboundedly in all these unfiltered therapies. The adequate use of protective measures is of vital importance when using noninvasive unfiltered therapies in infectious respiratory diseases.


Subject(s)
Air Movements , Exhalation , Models, Biological , Noninvasive Ventilation , Respiratory Aerosols and Droplets , Humans
6.
Indoor Air ; 32(1): e12917, 2022 01.
Article in English | MEDLINE | ID: covidwho-1388295

ABSTRACT

Tracer gas experiments were conducted in a 158 m3 room with overhead supply diffusers to study dispersion of contaminants from simulated speaking in physically distanced meeting and classroom configurations. The room was contained within a 237 m3 cell with open plenum return to the HVAC system. Heated manikins at desks and a researcher operating the tracer release apparatus presented 8-9 thermal plumes. Experiments were conducted under conditions of no forced air and neutral, cooled, or heated air supplied at 980-1100 cmh, and with/out 20% outdoor air. CO2 was released at the head of one manikin in each experiment to simulate small (<5 µm diameter) respiratory aerosols. The metric of exposure relative to perfectly mixed (ERM) is introduced to quantify impacts, based on measurements at manikin heads and at three heights in the center and corners of the room. Chilled or neutral supply air provided good mixing with ERMs close to one. Thermal stratification during heating produced higher ERMs at most manikins: 25% were ≥2.5 and the highest were >5× perfectly mixed conditions. Operation of two within-zone air cleaners together moving ≥400 cmh vertically in the room provided enough mixing to mitigate elevated exposure variations.


Subject(s)
Air Pollution, Indoor , Ventilation , Air Conditioning , Air Movements , Heating
7.
Risk Anal ; 41(5): 745-760, 2021 05.
Article in English | MEDLINE | ID: covidwho-1301543

ABSTRACT

In the U.S., spray irrigation is the most common method used in agriculture and supplementing with animal wastewater has the potential to reduce water demands. However, this could expose individuals to respiratory pathogens such as Legionella pneumophila and nontuberculosis Mycobacteria (NTM). Disinfection with methods like anaerobic digestion is an option but can increase concentrations of cytotoxic ammonia (personal communication). Our study aimed to model the annual risks of infection from these bacterial pathogens and the air concentrations of ammonia and determine if anaerobically digesting this wastewater is a safe option. Air dispersion modeling, conducted in AERMOD, generated air concentrations of water during the irrigation season (May-September) for the years 2013-2018. These values fed into the quantitative microbial risk assessments for the bacteria and allowed calculation of ammonia air concentrations. The outputs of these models were compared to the safety thresholds of 10-4 infections/year and 0.5 mg/m3 , respectively, to determine their potential for negative health outcomes. It was determined that infection from NTM was not a concern for individuals near active spray irrigators, but that infection with L. pneumophila could be a concern, with a maximum predicted annual risk of infection of 3.5 × 10-3 infections/year and 25.2% of parameter combinations exceeding the established threshold. Ammonia posed a minor risk, with 1.5% of parameter combinations surpassing the risk threshold of 0.5 mg/m3 . These findings suggest that animal wastewater should be anaerobically digested prior to use in irrigation to remove harmful pathogens.


Subject(s)
Risk Assessment/methods , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods , Aerosols , Agricultural Irrigation/methods , Agriculture/methods , Air , Air Movements , Ammonia/chemistry , Animals , Legionella pneumophila , Legionnaires' Disease/microbiology , Manure , Microfluidics , Mycobacterium/metabolism , Probability , Risk , Swine , Water
8.
Indoor Air ; 31(6): 1798-1814, 2021 11.
Article in English | MEDLINE | ID: covidwho-1268113

ABSTRACT

The spread of breathing air when playing wind instruments and singing was investigated and visualized using two methods: (1) schlieren imaging with a schlieren mirror and (2) background-oriented schlieren (BOS). These methods visualize airflow by visualizing density gradients in transparent media. The playing of professional woodwind and brass instrument players, as well as professional classical trained singers were investigated to estimate the spread distances of the breathing air. For a better comparison and consistent measurement series, a single high note, a single low note, and an extract of a musical piece were investigated. Additionally, anemometry was used to determine the velocity of the spreading breathing air and the extent to which it was quantifiable. The results showed that the ejected airflow from the examined instruments and singers did not exceed a spreading range of 1.2 m into the room. However, differences in the various instruments have to be considered to assess properly the spread of the breathing air. The findings discussed below help to estimate the risk of cross-infection for wind instrument players and singers and to develop efficacious safety precautions, which is essential during critical health periods such as the current COVID-19 pandemic.


Subject(s)
Air Movements , Singing , Air Pollution, Indoor , COVID-19 , Humans
9.
Int J Environ Res Public Health ; 18(10)2021 05 19.
Article in English | MEDLINE | ID: covidwho-1234735

ABSTRACT

Due to airborne transmission of the coronavirus, the question arose as to how high the risk of spreading infectious particles can be while playing a wind instrument. To examine this question and to help clarify the possible risk, we analyzed 14 wind instruments, first qualitatively by making airflows visible while playing, and second quantitatively by measuring air velocity at three distances (1, 1.5, 2 m) in the direction of the instruments' bells. Measurements took place with wind instrumentalists of the Bamberg Symphony in their concert hall. Our findings highlight that while playing, no airflows escaping from any of the wind instruments-from the bell with brass instruments or from the mouthpiece, keyholes or bell with woodwinds-were measurable beyond a distance of 1.5 m, regardless of volume, pitch or what was played. With that, air velocity while playing corresponded to the usual value of 1 m/s in hall-like rooms. For air-jet woodwinds, alto flute and piccolo, significant air movements were seen close to the mouthpiece, which escaped directly into the room.


Subject(s)
COVID-19 , Air Movements , Humans , Risk Assessment , SARS-CoV-2
11.
Environ Res ; 198: 111229, 2021 07.
Article in English | MEDLINE | ID: covidwho-1209551

ABSTRACT

We aimed to develop a model to quantitatively assess the potential effectiveness of face shield (visor) in reducing airborne transmission risk of the novel coronavirus SARS-CoV-2 during the current COVID-19 pandemic using the computational fluid dynamics (CFD) method. The studies with and without face shield in both an infected and healthy person have been considered in indoor environment simulation. In addition to the influence of the face shield and the synchronization of the breathing process while using the device, we also simulated the effect of small air movements on the SARS-CoV-2 infection rate (outdoor environment simulation). The contact with infectious particles in the case without a face shield was 12-20 s (s), in the presence of at least one person who was positive for SARS-CoV-2. If the infected person wore a face shield, no contact with contaminated air was observed during the entire simulation time (80 s). The time of contact with contaminated air (infection time) decreases to about 11 s when the surrounding air is still and begins to move at a low speed. Qualitative differences between simulations performed on the patients with and without the face shield are clearly visible. The maximum prevention of contagion is probably a consequence of wearing a face shield by an infected person. Our results suggest that it is possible to determine contact with air contaminated by SARS-CoV-2 using the CFD method under realistic conditions for virtually any situation and configuration. The proposed method is probably the fastest and most reliable among those based on CFD-based techniques.


Subject(s)
COVID-19 , SARS-CoV-2 , Air Movements , Humans , Pandemics , Tomography
12.
A A Pract ; 15(2): e01398, 2021 Feb 23.
Article in English | MEDLINE | ID: covidwho-1099913

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic prompted the creation of novel techniques to protect patients and health care providers. Simulations showed that disposable oxygen face tents act as a physical barrier and can be repurposed as a negative airflow tent. This case study presents a pediatric patient requiring dental surgery, ineligible for preoperative testing for COVID-19 due to developmental delay and aggression. Precautionary measures were taken by means of full personal protective equipment (PPE) and negative airflow tent. The tent added additional protection and is a promising new technique that is disposable, widely available, and offers full access to proceduralists.


Subject(s)
COVID-19/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Personal Protective Equipment , Tooth Extraction , Aggression/psychology , Air Movements , Anesthesia, General , COVID-19/diagnosis , COVID-19 Testing , Child , Developmental Disabilities/psychology , Humans , Male , Patient Compliance/psychology , SARS-CoV-2
13.
Ann Biomed Eng ; 49(9): 1973-1974, 2021 09.
Article in English | MEDLINE | ID: covidwho-1092258
14.
Phys Rev Lett ; 126(3): 034502, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1060608

ABSTRACT

To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10 µm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2 m advection range of the respiratory droplets within 1 sec. Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones. Our findings provide the starting points for larger parameter studies and may be instructive for developing strategies on optimizing ventilation and indoor humidity control. Such strategies are key in mitigating the COVID-19 pandemic in the present autumn and upcoming winter.


Subject(s)
Body Fluids/chemistry , Body Fluids/virology , COVID-19/transmission , Models, Biological , Aerosols/chemistry , Air Microbiology , Air Movements , COVID-19/virology , Computer Simulation , Disease Transmission, Infectious , Exhalation , Humans , Pandemics , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification
15.
Air Med J ; 40(1): 54-59, 2021.
Article in English | MEDLINE | ID: covidwho-1060089

ABSTRACT

OBJECTIVE: The aeromedical transport of coronavirus patients presents risks to clinicians and aircrew. Patient positioning and physical barriers may provide additional protection during flight. This paper describes airflow testing undertaken on fixed wing and rotary wing aeromedical aircraft. METHODS: Airflow testing was undertaken on a stationary Hawker Beechcraft B200C and Leonardo Augusta Westland 139. Airflow was simulated using a Trainer 101 (MSS Professional A/S, Odense Sø, Syddanmark, Denmark) Smoke machine. Different cabin configurations were used along with variations in heating, cooling, and ventilation systems. RESULTS: For the Hawker Beechcraft B200C, smoke generated within the forward section of the cabin was observed to fill the cabin to a fluid boundary located in-line with the forward edge of the cargo door. With the curtain closed, smoke was only observed to enter the cockpit in very small quantities. For the Leonardo AW139, smoke generated within the cabin was observed to expand to fill the cabin evenly before dissipating. With the curtain closed, smoke was observed to enter the cockpit only in small quantities CONCLUSION: The use of physical barriers in fixed wing and rotary wing aeromedical aircraft provides some protection to aircrew. Optimal positioning of the patient is on the aft stretcher on the Beechcraft B200C and on a laterally orientated stretcher on the AW139. The results provide a baseline for further investigation into methods to protect aircrew during the coronavirus pandemic.


Subject(s)
Air Ambulances , Air Conditioning/methods , Air Movements , COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Ventilation/methods , Air Conditioning/instrumentation , COVID-19/transmission , Humans , Ventilation/instrumentation
16.
Rev Sci Instrum ; 91(11): 114101, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-951299

ABSTRACT

The SARS-CoV-2 global pandemic has produced widespread shortages of certified air-filtering personal protection equipment and an acute need for rapid evaluation of breathability and filtration efficiency of proposed alternative solutions. Here, we describe experimental efforts to nondestructively quantify three vital characteristics of mask approaches: breathability, material filtration effectiveness, and sensitivity to fit. We focus on protection against aqueous aerosols >0.3 µm using off-the-shelf particle, flow, and pressure sensors, permitting rapid comparative evaluation of these three properties. We present and discuss both the pressure drop and the particle penetration as a function of flow to permit comparison of relative protection for a set of proposed filter and mask designs. The design considerations of the testing apparatus can be reproduced by university laboratories and medical facilities and used for rapid local quality control of respirator masks that are of uncertified origin, monitoring the long-term effects of various disinfection schemes and evaluating improvised products not designed or marketed for filtration.


Subject(s)
COVID-19/prevention & control , Masks , Pandemics/prevention & control , Respiratory Protective Devices , SARS-CoV-2 , Aerosols , Air Microbiology , Air Movements , Air Pressure , COVID-19/transmission , Equipment Design/standards , Face , Filtration/instrumentation , Humans , Masks/standards , Materials Testing/instrumentation , Materials Testing/standards , N95 Respirators/standards , Particle Size , Respiratory Protective Devices/standards
17.
Toxicol Ind Health ; 36(9): 634-643, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-883488

ABSTRACT

Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from person-to-person over long distances is currently thought to be unlikely, the current epidemiological evidence suggests that airborne SARS-CoV-2 infection transmission in confined, indoor spaces is plausible, particularly when outdoor airflow rates are low and when face masks are not utilized. We sought to model airborne infection transmission risk assuming five realistic exposure scenarios using previously estimated outdoor airflow rates for 12 New York City nail salons, a published quanta generation rate specific to SARS-CoV-2, as well as the Wells-Riley equation to assess risk under both steady-state and non-steady-state conditions. Additionally, the impact of face mask-wearing by occupants on airborne infection transmission risk was also evaluated. The risk of airborne infection transmission across all salons and all exposure scenarios when not wearing face masks ranged from <0.015% to 99.25%, with an average airborne infection transmission risk of 24.77%. Wearing face masks reduced airborne infection transmission risk to between <0.01% and 51.96%, depending on the salon, with an average airborne infection transmission risk of 7.30% across all salons. Increased outdoor airflow rates in nail salons were generally strongly correlated with decreased average airborne infection transmission risk. The results of this study indicate that increased outdoor airflow rates and the use of face masks by both employees and customers could substantially reduce SARS-CoV-2 transmission in New York City nail salons. Businesses should utilize multiple layers of infection control measures (e.g. social distancing, face masks, and outdoor airflow) to reduce airborne infection transmission risk for both employees and customers.


Subject(s)
COVID-19/transmission , Infection Control/methods , Occupational Exposure/analysis , Air Movements , Beauty Culture , Humans , Masks , New York City , Pandemics , Risk Assessment , SARS-CoV-2
18.
Proc Natl Acad Sci U S A ; 117(41): 25237-25245, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-797251

ABSTRACT

Many scientific reports document that asymptomatic and presymptomatic individuals contribute to the spread of COVID-19, probably during conversations in social interactions. Droplet emission occurs during speech, yet few studies document the flow to provide the transport mechanism. This lack of understanding prevents informed public health guidance for risk reduction and mitigation strategies, e.g., the "6-foot rule." Here we analyze flows during breathing and speaking, including phonetic features, using orders-of-magnitude estimates, numerical simulations, and laboratory experiments. We document the spatiotemporal structure of the expelled airflow. Phonetic characteristics of plosive sounds like "P" lead to enhanced directed transport, including jet-like flows that entrain the surrounding air. We highlight three distinct temporal scaling laws for the transport distance of exhaled material including 1) transport over a short distance (<0.5 m) in a fraction of a second, with large angular variations due to the complexity of speech; 2) a longer distance, ∼1 m, where directed transport is driven by individual vortical puffs corresponding to plosive sounds; and 3) a distance out to about 2 m, or even farther, where sequential plosives in a sentence, corresponding effectively to a train of puffs, create conical, jet-like flows. The latter dictates the long-time transport in a conversation. We believe that this work will inform thinking about the role of ventilation, aerosol transport in disease transmission for humans and other animals, and yield a better understanding of linguistic aerodynamics, i.e., aerophonetics.


Subject(s)
Asymptomatic Infections , Betacoronavirus/physiology , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Speech/physiology , Aerosols , Air Movements , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Humans , Models, Theoretical , Pandemics/prevention & control , Phonetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Respiration , SARS-CoV-2 , Ventilation
19.
Nano Lett ; 20(10): 7744-7750, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-759562

ABSTRACT

As coronavirus disease 2019 (COVID-19) continues to spread, a detailed understanding on the transmission mechanisms is of paramount importance. The disease transmits mainly through respiratory droplets and aerosol. Although models for the evaporation and trajectory of respiratory droplets have been developed, how the environment impacts the transmission of COVID-19 is still unclear. In this study, we investigate the propagation of respiratory droplets and aerosol particles generated by speech under a wide range of temperatures (0-40 °C) and relative humidity (0-92%) conditions. We show that droplets can travel three times farther in low-temperature and high-humidity environment, whereas the number of aerosol particles increases in high-temperature and low-humidity environments. The results also underscore the importance of proper ventilation, as droplets and aerosol spread significantly farther in airstreams. This study contributes to the understanding of the environmental impact on COVID-19 transmission.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Models, Biological , Pneumonia, Viral/transmission , Aerosols , Air Microbiology , Air Movements , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Exhalation , Gravitation , Humans , Humidity , Nanoparticles , Pandemics , Particle Size , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Temperature
20.
Int J Environ Res Public Health ; 17(15)2020 07 27.
Article in English | MEDLINE | ID: covidwho-680166

ABSTRACT

Airborne transmission of viruses, such as the coronavirus 2 (SARS-CoV-2), in hospital systems are under debate: it has been shown that transmission of SARS-CoV-2 virus goes beyond droplet dynamics that is limited to 1 to 2 m, but it is unclear if the airborne viral load is significant enough to ensure transmission of the disease. Surgical smoke can act as a carrier for tissue particles, viruses, and bacteria. To quantify airborne transmission from a physical point of view, we consider surgical smoke produced by thermal destruction of tissue during the use of electrosurgical instruments as a marker of airborne particle diffusion-transportation. Surgical smoke plumes are also known to be dangerous for human health, especially to surgical staff who receive long-term exposure over the years. There are limited quantified metrics reported on long-term effects of surgical smoke on staff's health. The purpose of this paper is to provide a mathematical framework and experimental protocol to assess the transport and diffusion of hazardous airborne particles in every large operating room suite. Measurements from a network of air quality sensors gathered during a clinical study provide validation for the main part of the model. Overall, the model estimates staff exposure to airborne contamination from surgical smoke and biological material. To address the clinical implication over a long period of time, the systems approach is built upon previous work on multi-scale modeling of surgical flow in a large operating room suite and takes into account human behavior factors.


Subject(s)
Air Microbiology , Coronavirus Infections/transmission , Models, Theoretical , Operating Rooms , Pneumonia, Viral/transmission , Air Movements , Air Pollution , Betacoronavirus , COVID-19 , Diffusion , Humans , Hydrodynamics , Pandemics , Particulate Matter , SARS-CoV-2 , Smoke/analysis , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL